Try a new search

Format these results:

Searched for:

person:lind01 or kc16 or Ipe Ninan or sippyt01

active:yes

exclude-minors:true

Total Results:

169


Monitoring norepinephrine release in vivo using next-generation GRABNE sensors

Feng, Jiesi; Dong, Hui; Lischinsky, Julieta E; Zhou, Jingheng; Deng, Fei; Zhuang, Chaowei; Miao, Xiaolei; Wang, Huan; Li, Guochuan; Cai, Ruyi; Xie, Hao; Cui, Guohong; Lin, Dayu; Li, Yulong
Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.
PMID: 38547869
ISSN: 1097-4199
CID: 5645192

Blueprinting extendable nanomaterials with standardized protein blocks

Huddy, Timothy F; Hsia, Yang; Kibler, Ryan D; Xu, Jinwei; Bethel, Neville; Nagarajan, Deepesh; Redler, Rachel; Leung, Philip J Y; Weidle, Connor; Courbet, Alexis; Yang, Erin C; Bera, Asim K; Coudray, Nicolas; Calise, S John; Davila-Hernandez, Fatima A; Han, Hannah L; Carr, Kenneth D; Li, Zhe; McHugh, Ryan; Reggiano, Gabriella; Kang, Alex; Sankaran, Banumathi; Dickinson, Miles S; Coventry, Brian; Brunette, T J; Liu, Yulai; Dauparas, Justas; Borst, Andrew J; Ekiert, Damian; Kollman, Justin M; Bhabha, Gira; Baker, David
A wooden house frame consists of many different lumber pieces, but because of the regularity of these building blocks, the structure can be designed using straightforward geometrical principles. The design of multicomponent protein assemblies, in comparison, has been much more complex, largely owing to the irregular shapes of protein structures1. Here we describe extendable linear, curved and angled protein building blocks, as well as inter-block interactions, that conform to specified geometric standards; assemblies designed using these blocks inherit their extendability and regular interaction surfaces, enabling them to be expanded or contracted by varying the number of modules, and reinforced with secondary struts. Using X-ray crystallography and electron microscopy, we validate nanomaterial designs ranging from simple polygonal and circular oligomers that can be concentrically nested, up to large polyhedral nanocages and unbounded straight 'train track' assemblies with reconfigurable sizes and geometries that can be readily blueprinted. Because of the complexity of protein structures and sequence-structure relationships, it has not previously been possible to build up large protein assemblies by deliberate placement of protein backbones onto a blank three-dimensional canvas; the simplicity and geometric regularity of our design platform now enables construction of protein nanomaterials according to 'back of an envelope' architectural blueprints.
PMID: 38480887
ISSN: 1476-4687
CID: 5644332

Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings

Weiner, Sydney P; Vasquez, Carolina; Song, Soomin; Zhao, Kaiyang; Ali, Omar; Rosenkilde, Danielle; Froemke, Robert C; Carr, Kenneth D
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
PMCID:10843874
PMID: 38323217
ISSN: 2772-3925
CID: 5632652

Brain-wide multi-fiber recording of neuronal activity in freely moving mice

Dai, Bing; Guo, Zhichao; Lin, Dayu
While brain regions function in coordination to mediate diverse behaviors, techniques allowing simultaneous monitoring of many deep brain regions remain limited. Here, we present a multi-fiber recording protocol that enables simultaneous recording of fluorescence signals from multiple brain regions in freely behaving mice. We describe steps for assembling a multi-fiber array and patch cord, implantation, and recording. We then detail procedures for data extraction and visualization. This protocol enables a comprehensive view of the neural activity at the network level. For complete details on the use and execution of this protocol, please refer to Guo et al.1.
PMID: 38340320
ISSN: 2666-1667
CID: 5632202

A dedicated hypothalamic oxytocin circuit controls aversive social learning

Osakada, Takuya; Yan, Rongzhen; Jiang, Yiwen; Wei, Dongyu; Tabuchi, Rina; Dai, Bing; Wang, Xiaohan; Zhao, Gavin; Wang, Clara Xi; Liu, Jing-Jing; Tsien, Richard W; Mar, Adam C; Lin, Dayu
To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.
PMID: 38267576
ISSN: 1476-4687
CID: 5625042

Identifying behavioral links to neural dynamics of multifiber photometry recordings in a mouse social behavior network

Chen, Yibo; Chien, Jonathan; Dai, Bing; Lin, Dayu; Chen, Zhe Sage
Distributed hypothalamic-midbrain neural circuits orchestrate complex behavioral responses during social interactions. How population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include continuous-state linear dynamical system (LDS) and discrete-state hidden semi-Markov model (HSMM). We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively. Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states. Overall, these analysis approaches provide an unbiased strategy to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.
PMCID:10793434
PMID: 38234793
CID: 5631482

A dedicated hypothalamic oxytocin circuit controls aversive social learning

Osakada, Takuya; Yan, Rongzhen; Jiang, Yiwen; Wei, Dongyu; Tabuchi, Rina; Dai, Bing; Wang, Xiaohan; Zhao, Gavin; Wang, Clara Xi; Liu, Jing Jing; Tsien, Richard W.; Mar, Adam C.; Lin, Dayu
To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.
SCOPUS:85182997082
ISSN: 0028-0836
CID: 5629362

Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors

Lischinsky, Julieta E; Yin, Luping; Shi, Chenxi; Prakash, Nandkishore; Burke, Jared; Shekaran, Govind; Grba, Maria; Corbin, Joshua G; Lin, Dayu
Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.
PMID: 37946049
ISSN: 1546-1726
CID: 5603032

A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors

Wang, Huan; Qian, Tongrui; Zhao, Yulin; Zhuo, Yizhou; Wu, Chunling; Osakada, Takuya; Chen, Peng; Chen, Zijun; Ren, Huixia; Yan, Yuqi; Geng, Lan; Fu, Shengwei; Mei, Long; Li, Guochuan; Wu, Ling; Jiang, Yiwen; Qian, Weiran; Zhang, Li; Peng, Wanling; Xu, Min; Hu, Ji; Jiang, Man; Chen, Liangyi; Tang, Chao; Zhu, Yingjie; Lin, Dayu; Zhou, Jiang-Ning; Li, Yulong
Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.
PMID: 37972184
ISSN: 1095-9203
CID: 5608072

Involvement of the Receptor for Advanced Glycation End Products (RAGE) in high fat-high sugar diet-induced anhedonia in rats

Carr, Kenneth D; Weiner, Sydney P; Vasquez, Carolina; Schmidt, Ann Marie
Clinical and basic science investigation indicates a link between insulin resistance and anhedonia. Previous results of this laboratory point to impaired nucleus accumbens (NAc) insulin signaling as an underpinning of diet-induced anhedonia, based on use of a glucose lick microstructure assay. The present study evaluated whether advanced glycation end products (AGEs) and their receptor (RAGE), known to mediate obesogenic diet-induced inflammation and pathological metabolic conditions, are involved in this behavioral change. Six weeks maintenance of male and female rats on a high fat-high sugar liquid diet (chocolate Ensure) increased body weight gain, and markedly increased circulating insulin and leptin, but induced anhedonia (decreased first minute lick rate and lick burst size) in males only. In these subjects, anhedonia correlated with plasma concentrations of insulin. Although the diet did not alter plasma or NAc AGEs, or the expression of RAGE in the NAc, marginally significant correlations were seen between anhedonia and plasma content of several AGEs and NAc RAGE. Importantly, a small molecule RAGE antagonist, RAGE229, administered twice daily by oral gavage, prevented diet-induced anhedonia. This beneficial effect was associated with improved adipose function, reflected in the adiponectin/leptin ratio, and increased pCREB/total CREB in the NAc, and a shift in the pCREB correlation with pThr34-DARPP-32 from near-zero to strongly positive, such that both phospho-proteins correlated with the rescued hedonic response. This set of findings suggests that the receptor/signaling pathway and cell type underlying the RAGE229-mediated increase in pCREB may mediate anhedonia and its prevention. The possible role of adipose tissue as a locus of diet-induced RAGE signaling, and source of circulating factors that target NAc to modify hedonic reactivity are discussed.
PMCID:10592025
PMID: 37625475
ISSN: 1873-507x
CID: 5599112